Calculating Relative Standard Error (RSE)

April 6, 2017

To calculate RSE you need to know:

1. The true concentration of each calibration standard. This is x_{i}
2. The measured concentration of each calibration standard. This is $x^{\prime}{ }_{i}$
3. The number of standard levels in the curve. This is n
4. The type of curve (average, linear or quadratic) the type of curve determines the value of p. For an average curve, $p=1$, for linear $p=2$ and quadratic $p=3$
5. Calculate the measured result -the true concentration / the true concentration for each level, then square the results.

$$
\left[\frac{x_{i}^{\prime}-x_{i}}{x_{i}}\right]^{2}
$$

2. Divide each value determined in (1.) by n - p. For example if there are 5 calibration levels and the curve type is linear, $5=2=3$ so divide each value by 3 .

$$
\frac{\left[\frac{x_{i}^{\prime}-x_{i}}{x_{i}}\right]^{2}}{n-p}
$$

3. Add all the values determined in (2.) together

$$
\sum_{i=1}^{n} \frac{\left[\frac{x_{i}^{\prime}-x_{i}}{x_{i}}\right]^{2}}{n-p}
$$

4. Take the square root of the value determined in (3.)

$$
\sqrt{\sum_{i=1}^{n} \frac{\left[\frac{x_{i}^{\prime}-x_{i}}{x_{i}}\right]^{2}}{n-p}}
$$

5. Multiply the result obtained in (4.) by 100% to obtain the RSE.

$$
\% R S E=100 \times \sqrt{\sum_{i=1}^{n} \frac{\left[\frac{x_{i}^{\prime}-x_{i}}{x_{i}}\right]^{2}}{n-p}}
$$

Notes

Units do not matter so long as all of the calibration levels and results are in the same units Weighting does not matter (the value of p for a linear curve is 2 whether weighted or not)

Example

Column A	Column B	Column C	Column D
True value	Measured value	(Measured-true/true) ${ }^{2}$	$($ Column C result) / (n- $\mathrm{p})$
0.05	0.0582	0.026896	0.008965333
0.5	0.4396	0.01459264	0.004864213
2.5	2.304	0.00614656	0.002048853
5	4.876	0.00061504	0.000205013
10	10.34	0.001156	0.000385333

Sum of the values in Column D $=0.016468747$
Square root of that sum $=0.1283$
Multiply by 100\%, RSE = 12.83\%

A companion excel spreadsheet is available to simplify this process.

